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Abstract--We derive a new form of the compatibility equations for large deformations. These equations show 
that in a continuous inhomogeneous deformation, the strain gradients are related to the curvatures of the 
principal strain trajectories. In the case of uniform area strain, the equations express a direct relationship between 
the shape of the strain ellipse at a point and the curvatures of the principal trajectories. These relationships 
become particularly useful if the fabric in a deformed rock is taken as parallel to the principal strain trajectories. 

We demonstrate that the compatibility equations provide important strain information for several geologically 
interesting special cases: uniform area strain, compaction of a bed, fanned or axial planar cleavage, and some 
three-dimensional structures such as cylindrical folds. We also show that in a three-dimensional structure with 
one straight strain trajectory there will always be uniform area strain in the cross-section normal to the straight 
trajectory, as long as the volume strain in the structure is uniform. 

The pole of the finite strain Mohr circle is a unique point on the circle which graphically relates the state of strain 
in a body to its orientation in the physical plane. If a set of Mohr circles describes an inhomogeneous state of 
strain, then the curve connecting the poles of these circles is called the pole curve. We derive an exact analytical 
expression for the pole curve which applies to ductile deformation zones, refracted cleavage, and deformed 
stratigraphic sections; all with uniform area strain. For these special cases, the pole curve describes the entire 
strain field for the deformation as long as we know the strain at any one point in the deformed zone. 

NOMENCLATURE 

xi the axes of a Cartesian coordinate system, 
s~ the axes of an orthogonal curvilinear coordinate system 

everywhere tangent to the principal strain trajectories, 
t~i the reciprocal left stretch tensor, 
;tli the Cauchy strain tensor, 
A the second invariant of the Cauchy tensor, also the square of the 

second invariant of the reciprocal left stretch tensor, 
t~ the angular shear strain, 
Ki the curvature of the principal strain trajectories, 
0' the angle between the tangent to s~ and an arbitrary reference 

line, 
~o the angle of rigid rotation, 
B the constant value of A h in a ductile deformation zone, 
l0 the original thickness of a small material element, 
/22 the deformed thickness of a small material element, 
Lo the original thickness of a stratigraphic unit, 
L22 the deformed thickness of a stratigraphic unit. 

I N T R O D U C T I O N  

the same length on  both  e lements ,  or else d iscont inui t ies  
will develop.  This idea can be ex tended  to every side of 

each infinitely small  de fo rmed  e l e me n t  in an ent i re  body  

of rock. Thus ,  the simple s t ipula t ion of cont inu i ty ,  that  

ne i ther  gaps nor  overlaps develop,  puts  constra ints  on 
how the strain can vary in the rock. The  mathemat ica l  

descr ipt ion of this s t ipula t ion is the compat ib i l i ty  
re la t ionship.  

O n e  reason that  compat ib i l i ty  has received so little 
a t t en t ion  is that ,  in s t andard  form,  each of the two 

equa t ions  is a part ial  differential  equa t ion  with two 
i n d e p e n d e n t  and  four  d e p e n d e n t  variables.  We will 

show two ways that  the compat ib i l i ty  equa t ions  may be 
simplified substant ia l ly ,  reveal ing a significant a m o u n t  

of geological  in fo rmat ion .  The  me thods  which will be 
employed  are (1) a coord ina te  t r ans fo rmat ion  and  (2) 

the cons idera t ion  of special strain geometr ies .  

UNFORTUNATELY, we never  find strain markers  at every 

po in t  of in teres t  in a de fo rmed  body of rock. W h a t  we 
need  to uns t ra in  a rock is an analyt ical  express ion for the 
whole  strain field which can be deduced  f rom a more  
ub iqu i tous  p roper ty  of the de fo rmed  rock,  possibly 

cleavage, A n  analyt ical  express ion  of this type is 
e m b o d i e d  in the compat ib i l i ty  equa t ions  for large defor-  
mat ions .  

The  strain in a con t inuous ly  de fo rmed  rock canno t  
vary r a n d o m l y  f rom poin t  to point .  The  c o m m o n  side of 
any two ad jacen t ,  de fo rmed  mater ia l  e l ements  must  be  

* Deceased 30 August 1982. 

THE EQUATIONS IN STANDARD FORM 

A n y  very small  mater ia l  e l e me n t  in an i n h o m o g e n e o u s  
de fo rmat ion  field can be cons idered  homogeneous ly  

deformed.  Accord ing  to the l imit t heo rem,  this approxi-  
ma t ion  becomes  exact for an infini tely small  e lement .  
Since we canno t  measure  the strain in an infini tely small  
e l ement ,  we must  decide how large each mater ia l  ele- 
m e n t  can be wi thout  seriously violat ing the homogene i ty  
approx imat ion .  The  practical  p rob lem we face is to keep 

the size of the homogeous ly  s t ra ined e l emen t  small ,  
relat ive to the scale of the i n h o m o g e n e o u s  de fo rmat ion  
of interest .  It  may be valid, for example ,  to take the 
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average strain in an outcrop as a homogeneous part of a 
regional strain field. The derivation and transformation 
of the compatability equations does not rely on actually 
choosing some finite element size with which to operate, 
but this choice is implicit whenever we apply the equa- 
tions to deformed rocks. 

The assumption that rock is a continuum with 
smoothly varying strains is fundamental to the compati- 
bility equations. To the geologist, this means that no 
faults cut the region being studied. This restriction, 
however, is relative to the scale of observation. On a 
microscopic scale, for example, rocks may become a set 
of inhomogeneously strained crystals with discon- 
tinuities at the grain boundaries, violating the continuum 
assumption. Yet, these grain boundaries do not prevent 
us from applying the compatibility concept to deforma- 
tions on the scale of an outcrop. In other words, discon- 
tinuities only become problematical as they approach 
the scale of the deformation being studied. 

The application of the compatibility concept to large 
deformations is not new. In the continuum mechanics 
literature, for example, discussions of compatibility may 
be found in Gol 'denblat (1962, pp. 74--82) and Truesdell 
& Toupin (1960, pp. 271-272), but this work is presented 
in a very abstract manner. The form of the compatibility 
equations stated by Gol'denblat,  for instance, has over 
65 terms in a single equation. No simplification or appli- 
cation of the compatibility equations is suggested in 
these works, leaving the reader with the impression that 
compatibility for large deformations is just a mathemati- 
cal oddity without practical application. 

There is some geological application of the much 
simpler compatibility equations for infinitesimal defor- 
mations. Schwerdtner (1976), for example, used a sim- 
ple a-priori extension of the infinitesimal equations to 
demonstrate the importance of vertical as well as hori- 
zontal finite strain gradients in determining crustal 
shortening. 

Cobbold (1977, 1980) produced the first full treatment 
of finite strain compatibility in the geological literature, 
and his equations are much simpler than any in the 
continuum mechanics literature. Cobbold's derivation 
forms the basis for our work, and we have presented a 
modified form of it in Appendix 1. This derivation shows 
that the two-dimensional compatibility equations for 
finite deformations in standard f o r m  are: 

- A  a t o _  1 OA h 0t12 cqot221 
OXl 2 OX 2 tn ~Xl tl2 

A Oto _ 1 OA~2 t22 0t12 _ e)tll " 
axe 2 0 x  I ~ /12 Ox 2, 

(1) 

where x~ and x2 represent a coordinate system drawn on 
the deformed rock; Ah and A~2 are the reciprocal quadra- 
tic elongations; tn, t22 and t12 are the elements of the 
reciprocal left stretch tensor; A is the reciprocal quadra- 
tic area strain; and to is the reciprocal rotation. 

Certain steps in the derivation of the compatibility 
equations require the coordinate system we use to be 
orthogonal. Since we are always discussing the strain at 

a point, however, the orthogonality of the coordinate 
axes is only necessary at their point of intersection. The 
most general coordinate system in which we can use the 
compatibility equations is, therefore, an orthogonal 
curvilinear system, of which the Cartesian coordinate 
system is a special case. 

Considerable simplification of the equations is 
immediately achieved by letting x~ and x 2 be the special 
curvilinear coordinate frame whose axes are always 
parallel to the principal directions. In this special coordi- 
nate frame, all the off-diagonal components of the recip- 
rocal pure strain tensor will be zero. To emphasize that 
we are using principal coordinates, xl and x2 have been 
replaced by Sl and s2. The compatibility equations in the 
principal coordinate frame are: 

- 2 A  0to_ aA~ 
OSl as2 

aw _ aA~ 
2A 

Os 2 c3s~ 

(2) 

These equations are similar to those of Cobbold (1980, 
equation 5). 

SIMPLIFICATION BY TRANSFORMATION 

Our next simplification involves the application of a 
coordinate transformation, for which it is necessary that 
the old coordinate axes can be uniquely expressed as 
functions of the new ones. The strain field itself is 
invariant with respect to coordinate transformations, 
but our description of it may be simpler in one coordinate 
frame than in another. If we can find a special coordinate 
system with only one independent variable, then our 
description of the strain field will be in its simplest form 
(Appendix 2). In order to express the two-dimensional 
strain field with only one independent variable, we will 
have to put some restrictions on the path of integration 
in the physical plane. 

Let sl and s2 be axes of a principal curvilinear coordi- 
nate frame. Define the angle 0' between the tangent to 
the sl curve at some point and some arbitrary, but fixed, 
reference line (Fig. 1). Changes in the value of O' are a 
function of changes in position along sl. Because Sl and 
s2 are defined as perpendicular where they intersect, we 
could equally define 0' as the angle between a line 
perpendicular to s2 and the same reference line. Thus, 
changes in 0' are also a function of changes in s2. If we 

s~ 

Fig. 1. The  r e l a t ionsh ip  of s I and  s 2 to 0' .  
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now restrict ourselves to a monotonically increasing or 
decreasing segment ofsl  and Se, then a change in position 
along that curve will be a single valued function of 0' 
along this segment. We have, therefore,  fulfilled the 
necessary condition for a coordinate transformation, 
namely that the old coordinate system can be expressed 
as a unique function of the new one. 

When we transform the compatibility equations from 
the st and s2 system to the 0' system, we find that many of 
the new terms represent a change in 0' with respect to a 
change in arc length along st and s2, which is the defini- 
tion of the curvatures Kt and 1(2, respectively. There- 
fore, 

&o 0A{ 
- 2 A  0--~-, g~ = ~ K2 

0~o 0A~ 
2A 0-~ K 2 = ~ K l . 

(3) 

The only independent  variable in these equations is 
0', so all of the terms containing 0' in (3) can be 
considered as total differentials. Consequently,  0' can 
be algebraically eliminated from the equations, thus: 

- 2 A  &oK1 = dA~K 2 (4) 
2AdtoK2 = dA'Kt,  

which is the reduced form of the compatibility equations 
for large deformations. A somewhat more useful 
reduced form of these equations can be derived by 
combining the above equations: 

and 

dA'l - (Kt~ 2 (5) 
dA~ \K22] 

(2A d~o) 2 = -dA~ dA~. (6) 

We must still remember  that position changes are 
restricted to monotonically increasing or decreasing seg- 
ments of the st and s2 curves in the above equations. Our 
discussion will be concerned primarily with equation (5), 
since the rotational term in equation (6) is inherently 
difficult to measure. 

EXPERIMENTAL VERIFICATION OF 
EQUATIONS 

(o) 

(b) 

A~I 5 ~. .  b 

a ~'= ~N,. 
. 5  l . O  L 5  2 . 0  

i I _ _ _  I - - . J  

X'a 
(c) 

Fig. 2. Verifying the compatibility equations. (a) Photograph of 
inhomogeneously stretched rubber sheet. Ellipses were initially cir- 
cles of equal area. (b) Principal strain trajectories traced from photo- 
graph. Strains were measured at points designated a-f. (c) Graphical 

technique used to measure strain gradients at point b. 

The experiment delineated here simulates a two- 
dimensional deformation. Regardless of the material 
being deformed,  application of the two-dimensional 
equation implies that the planar section being studied is 
a principal plane of the deformation. This experiment is 
independent of the scale and type of material chosen for 
the deformation,  as long as the deformation is continu- 
ous. We performed the experiment using a sheet of 
natural rubber measuring approximately 7.5 × 20 x 0.05 
centimeters. 

Method 

Before applying the compatibility equations to natur- 
ally deformed rocks, we need to verify that our 
mathematical manipulations do indeed have physical 
meaning. We test the compatibility equation (equation 
5) in a simple experiment involving a deformation for 
which the strain gradients and the curvatures of the 
principal trajectories can be evaluated independently. 
We can then evaluate the left-hand side of equation (5) 
separately from the right-hand side. These indepen- 
dently determined quantities should be equal, which 
they are, and we therefore conclude that the reduced 
form of the compatibility equations is accurate. 

Draw or otherwise make a large number  of closely 
spaced circles on the rubber sheet. The circles should be 
small enough to deform homogeneously during an 
inhomogeneous deformation of the rubber sheet. Photo- 
graph the rubber sheet in its unstretched state. Now 
stretch the rubber sheet such that the resulting deforma- 
tion is obviously inhomogeneous.  The small circles 
should still deform to ellipses, even though the strain 
changes from ellipse to ellipse. Photograph the 
deformed rubber sheet (Fig. 2a). If both the undeformed 
and deformed states are photographed at the same scale, 
then the photographs can be enlarged or reduced to any 



290 J. CUTLER and D. ELLIOTT 

convenient size in order to measure the strains and 
curvatures. 

Working from the photograph of the deformed rubber 
sheet, trace off any pair of principal trajectories. One 
trajectory should be everywhere parallel to the long axes 
of the ellipses and the other should be everywhere 
parallel to the short axes. The point at which these 
trajectories intersect is the point for which the compati- 
bility equations will be tested. The first step is to measure 
the curvature of each of these principal trajectories at 
their point of intersection, a task which we undertook 
using a digitizer and a small computer. Use the curva- 
tures of the principal trajectories to evaluate the right- 
hand side of equation (5). 

To evaluate the left-hand side of equation (5), we 
need to measure the strain gradients at the same point 
for which we measured the curvatures. From the deriva- 
tion of the compatibility equations we know that the 
strain gradients must be evaluated along one of the 
principal trajectories. Choose several points, along 
either of the trajectories, for which the strain can be 
easily measured (Fig. 2b). One of these points must be 
the point at which the principal trajectories intersect. 
Now measure Ai and A~ for each of the selected points 
and plot the strains for each point on a graph of Ai vs A~. 
Fit a curve to the plotted points. For natural rubber, this 
curve turns out to be a straight line (Fig. 2c), which may 
not be the case with materials which deform plastically. 
The fact that the strain gradients are linear does not 
affect the experiment. 

If the fitted curve is a straight line, then the slope of 
this line represents the left-hand side of equation (5). If 
the fitted curve is not a straight line, then draw a line 
which is tangent to the curve at the strain point which 
corresponds to the material point where the trajectories 
intersect. The slope of this tangent line is equal to the 
ratio of the strain gradients at the point of intersection of 
the trajectories. To evaluate the left-hand side of equa- 
tion (5), take the negative of this slope. Compare the 
values obtained for the two sides of equation (5). 

Results 

In our experiment, the difference between the ratio of 
the strain gradients (0.57) and the square of the ratio of 
the curvatures (0.52) is less than 10%, which we consider 
to be within the limits of experimental error. We con- 
clude that equation (5) is valid and has physical meaning. 

PURE FLATTENING AND COMPACTION 
OF A BED 

Consider bed surfaces that were straight and parallel 
at the time of deposition, and which retain this configura- 
tion after deformation. Let flattening occur such that the 
strain trajectories are everywhere oriented parallel and 
perpendicular to the bed. We call this type of deforma- 
tion pure flattening. Geologically important cases of 

X 2 

@ ( 2 2 >  
X~ 

(o) 

× 

C53 <S) 
XI 

(b) 

Fig. 3. Only three styles of deformation satisfy the compatibility 
equations in the case of a pure flattening: (a) Area strain varying across 
the bed only. (b) Inhomogeneous pure shear, with the discontinuities 
being required by compatibility, and homogeneous pure shear over 

the whole layer, which is not depicted. 

pure flattening include zones of locally enhanced pres- 
sure solution and beds which have been compacted 
under an overlying sediment load. 

It is advantageous to choose a Cartesian coordinate 
system parallel to the principal directions. From the 
relationships between the elements of the Cauchy strain 
tensor and the reciprocal left stretch tensor (Appendix 
1, equations 7 and 8), we can see that tl2 = 0 for pure 
flattening in the principal coordinate frame. Because the 
surfaces of the flattened bed are parallel both before and 
after the deformation, we also know that the rotational 
gradient is zero. The standard form of the compatibility 
equations (1) thus becomes: 

0A{ _ 0 
0 x  2 

(7) 

The parallel nature of the bedding surface also permits 
us to say: 

0al _ 0. (8) 
0 x  1 

Thus, the only non-zero strain gradient in the compacted 
bed case is OA~/ax2. 

There are two different ways to satisfy these equa- 
tions. Either (1) OA;/,gx2 = 0, and the style of deforma- 
tion is homogeneous pure shear, or (2) o~A~/o~x2 ¢- 0, 
and there is an area strain gradient across the bed which 
must take place in such a way that only A~ changes (Fig. 
3a). The alternative is that there are discontinuities in 
the material and the equations are not valid (Fig. 3b). 
Discontinuities which cou ld  cause the compatibility 
relationship to breakdown might take the form of bed- 
ding surfaces with slip, stylolites, or fractures. In the 
event that the strain is discontinuous, we might also 
expect to see Aj varying across the beds. All of the strains 
would still be constant parallel to the bedding. 

UNIFORM AREA STRAIN 

In a later section we shall show that deformations with 
uniform area strain may be fairly common. For now we 



The compatibility equations and the pole to the Mohr circle 291 

shall assume that it is possible to determine indepen- 
dently that the area strain is uniform over the deformed 
region in which we are interested. One measure of the 
area strain is the second invariant of the Cauchy strain 
tensor: 

A = A' 1A t. (9) 

When A = 1, there is no area strain; when 0 < A < 1, the 
deformed area is larger than the undeformed area; and 
when 1 < ,4 < infinity, the deformed area is smaller than 
the undeformed area. Putting equation (9) into differen- 
tial form, 

dA = AIdA~ + dAiA~. (10) 

Now, if we permit area strain, but require that the area 
strain remain uniform over the region of interest, then 
dA = 0 and equation (10) becomes: 

dAi _ A', (11) 
dA{ a" 

This equation has a term in common with the reduced 
form of the compatibility equation in principal coordi- 
nates (5). Eliminating the common terms between these 
two equations: 

A{ _{KI~  2, (12) 

which states that the axial ratio of the strain ellipse at a 
point is exactly determined by the ratio of the curvatures 
of the principal strain trajectories for the case of uniform 
area strain. Simplifying (12): 

Axial Ratio = K2/K 1. (13) 

From equation (13) it is clear that if/ /2 = 0, then the 
curvature of the A i trajectory must also be equal to zero. 
The only other way for K2 to equal zero is if hl equals 
zero, which violates conservation of mass. 

The geological implication of this situation is signifi- 
cant, especially in the case of fanned cleavage. If we 
observe a set of non-parallel, but straight strain trajec- 
tories, then there must either be a variable area strain or 
discontinuities in the rock. These discontinuities could 
take the form of bedding plane slip, faults, large stylol- 
ites, or veins. 

We emphasize that a uniform area strain is not the 
same as no area strain. In the next section we will show 
that uniform area strain may be a case of rather wide 
applicability. 

T H R E E - D I M E N S I O N A L  S T R A I N  

D I S T R I B U T I O N S  

One straight strain trajectory 

Consider a three-dimensional deformation where one 
of the three principal directions, possibly the stretching 
direction or the cleavage, is a straight line in the rock. 
The reduced form of the compatibility equations (5) can 

be written for each principal surface in the three-dimen- 
sional deformation. The fact that the principal planes 
may be curved surfaces does not prevent this generaliza- 
tion, since si, s2 and s3 will still represent an orthogonal 
curvilinear coordinate system. This set of equations will 
take the form: 

(KI  2 (14) 
dA~ \K2] 

dA~ _ (e2~ 2 (15) 

dA_  _ (16) 
dA~ [K3] 

If one of the principal strain trajectories is a straight 
line, the curvature of that trajectory will be zero. Often 
K 2 =  0, but KI # 0  and K 3 #  0, as in the case of a 
cylindrical fold. Then,  from equation (15) we see 
immediately that dA~ = 0, so that A~ must be constant in 
the A~A~ surface. Also, from equation (14) we can see 
that A~ must also be constant in the AIA ~ surface. We 
can conclude that A t is constant in any three-dimensional 
structure with a straight intermediate strain trajectory. 
The same argument is equally valid for any three-dimen- 
sional deformation with a straight strain trajectory; the 
strain parallel to this trajectory always being constant. 

Two straight strain trajectories 

Now consider a region where both the cleavage and 
the stretching direction plot as point maxima on a 
stereonet,  so that two of the three principal strain trajec- 
tories are straight. In other words, K: = 0 and K 3 = 0, 
and both A~ and A~ are constant in the deformed struc- 
ture. This could be the case on a local scale, such as along 
the planar axial surface of a cylindrical fold. Cobbold 
(1980, p. 382) uses the example of the bending of a beam 
to illustrate this situation. 

One straight strain trajectory and uniform volume strain 

One measure of volume strain in three dimensions is: 

V = A{A~A~. (17) 

If the volume strain is uniform, and if Kz = 0, then A~ 
is a constant and equation (17) can be written: 

V 
- AIA~ = constant, (18) a; 

which says that the area strain in the A'IA~ plane is 
uniform. 

This discussion demonstrates that any cross-section 
taken normal to a straight strain trajectory will have 
uniform area strain, as long as the volume strain is also 
uniform. For example, if a ductile deformation zone has 
a stretching direction which is everywhere normal to the 
plane of the section, and if the volume strain is uniform, 
then the area strain in the plane of the section will also be 
uniform. Thus, the uniform area strain assumption is 



292 J. CUTLER and D. ELLIOTr 

easily tested from the symmetry of the fabric, and we 
think that this case may prove to be fairly common. The 
uniform volume strain assumption might be testable by 
taking a series of density measurements and showing 
that the density remains constant over the region of 
interest. 

T H E P O L E C U R V E  

A Mohr circle describes the two-dimensional state of 
strain in a homogeneously deformed rock. Direction on 
the Mohr diagram always means 'relative to the principal 
directions',  and there is no reference to an external 
coordinate frame. If we want to record the physical 
orientation of our deformed material on the Mohr dia- 
gram, then we must use a point on the Mohr circle called 
the pole. 

To locate the pole, draw the deformed objects on a 
piece of paper. On the same piece of paper construct the 
Mohr diagram for these objects. Next, take a material 
line, l, for which the strain is known and plot its strain 
point on the Mohr circle (Fig. 4). Now construct the line 
l' such that it goes through the strain point and is 
physically parallel to l. The  other  point in which l' 
intersects the Mohr  circle is the pole. 

The above procedure can be applied to any material 
line in the physical plane, and the position of the pole 
will be the same in every case. The formal definition of 
the pole is the point of  intersection, on the Mohr circle, of 
all lines which go through strain points and are parallel to 
the material lines which those points represent. 

The pole of the Mohr circle is widely used for describ- 
ing states of stress (e.g. Ford & Alexander 1977, p. 70, 
Mandl & Shippam 1981, p. 96). In fact, the pole can be 
defined for a Mohr circle representation of any second 
rank tensor, including the reciprocal left stretch tensor 
and Cauchy strain tensor. Note that with the Mohr circle 
for stress, the pole is drawn parallel to the normal of a 
plane on which the stress is known. For finite strain, on 
the other  hand, we define the pole as parallel to the line 
whose strain is known. 

At The Johns Hopkins University we have been solv- 
ing finite strain problems using the pole construction 
since 1969, and we think that it can be used to considera- 
ble advantage. For example, to find the orientation of 
the material line corresponding to a particular strain 
point on the Mohr circle, simply draw a line from the 
strain point to the pole. This line is parallel to the 
material line in the deformed rock which has the strain 
represented by that point. This is an easy way to find the 
principal directions in the deformed rock if the Mohr 
circle is known (line k, Fig. 4). 

After studying Prager's elegant graphical construction 
using the pole for the stress Mohr  circle to deduce slip 
line fields for a flowing, perfectly plastic material (see 
Ford & Alexander 1977, pp. 491-513), we thought that a 
somewhat similar construction might be valid for 
inhomogeneous finite strains. Consider a deformed 
planar cross-section and draw an arbitrary line, m, on 

PHYSICAL PLANE 

x2 

/ 
x 1 

STRAIN PLANE 

POL E 

k 

x' 

Fig. 4. The pole to the Mohr circle. (See text for explanation). 

PHYSICAL PLANE STRAIN PLANE 
x2 ~, 

m t 

X' 

Fig. 5. Construction of the pole curve. The variation in strain along line 
m in the physical plane is represented by the pole curve, m', in the 

strain plane. 

this section (Fig. 5). Choose several points along m and 
construct the Mohr circle for strain at each of these 
points, drawing all of the Mohr circles on the same strain 
plane. Each of these Mohr circles will have a pole, and 
the curved line, m' ,  which goes through all of these poles 
will represent the state of strain along m. In other words, 
line m on the physical plane has an image m' in the strain 
plane, and this image is called the pole curve. Note that 
when we choose a Cartesian coordinate frame for the 
physical plane it should be oriented such that the x~ 
direction is parallel to the horizontal axis of the strain 
plane. 

In order  to find an analytical expression for the pole 
curve, we must first determine which variables describe 
the position of the pole in the strain plane. A vertical line 
in the physical plane will have the strain A~2, since we 
take this to be the x2 direction. Drawing a vertical line 
through the pole of a Mohr circle, we can see that all 
poles have A~2 as one of their coordinates (Fig. 6). The 
shear on the line parallel to x2 is h~2 by definition, so '~2 
will be the other coordinate of the pole in Mohr space. 
Any analytical expression for the pole curve, therefore,  
must describe how h~2 varies as a function of h~2. In the 
next section, we will use the compatibility equations 
along with a geologically important strain geometry to 
arrive at an expression for the pole curve. 

In summary, it is possible to represent the complete 
state of strain along a given material line with a large 
number of adjacent,  homogeneously deformed material 
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Fig. 6. The pole for any homogeneous deformation has the coordinates 
(A~2, A'I2). Every point on the pole curve represents the pole to one 

Mohr  circle, and therefore has these coordinates. 
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x1 

Fig. 7. Constant strain in one direction. Here the parallel strain 
trajectories and parallel bounding surfaces indicate that the strain is 
constant in the x 1 direction. This could be a ductile deformation zone, 

refracted cleavage, or a deformed stratigraphic unit. 

elements. Each deformed element will have a Mohr 
circle, and each Mohr  circle will have a pole. If all of 
these Mohr  circles are plotted on the same Mohr plane, 
then all of their poles can be connected into a continuous 
and unique curve, called the pole curve. Every material 
line in the physical plane thus maps onto a unique line, 
or pole curve, in the strain plane. 

Ductile deformation zones and refracted cleavage 

Draw a straight line on a deformed cross-section. If all 
of the principal strain trajectories crossing that line are 
parallel to each other,  and if both boundaries of the 
deformed zone are parallel to the constructed line, then 
the strain is constant along this line. Geologic examples 
of this important  special case are refracted cleavage, 
ductile deformation zones, and some deformed stratig- 
raphic sections. 

It is advantageous to choose a Cartesian coordinate 
system with x] parallel to the direction of constant strain 
and the boundaries of the deformed zone (Fig. 7). If all 
of the strains are constant in the xx direction, then all of 
the strain gradients in this direction must be zero. The 
standard form of the finite strain compatibility equations 
(1) becomes: 

0ah _ 0 

e)X2 (19) 

- A  3to 3t12 3tu. 
= t22~X 2 "4- 812 OX~ OX2 

The compatibility equations now contain only one 
independent  variable, x2, and the partial differentials 
can be converted to total differentials. Multiplying both 
equations through by dx2 yields: 

dAil = 0, or All = constant 
(20) 

and -Ad~o = t22dt12 = t l2d t l l .  

In other words, the compatibility equations for this 
strain geometry show that A h has the same value 
everywhere in the deformed cross-section. 

We have already used the second variant of the 
Cauchy strain tensor as a measure of area strain (equa- 
tion 9). In a non-principal frame, this area strain is: 

A = /~[1/~2 - (,~[2) 2. (21 )  

If the area strain does not change from point to point 
within our deformed zone, then both A and A(I will be 
constants in the above equation. Rewriting equation 
(21) to emphasize this fact: 

(A{2)2 = B(A~2 - ~ )  , (22)  

where B = A h, and both A and B are constants. 
Equation (22) gives a{2 as a function of a~2, and is 

therefore the equation of the pole curve for the deforma- 
tion. This one pole curve is valid for all material lines in 
the deformed zone, since we have expressed the strain 
field as a function of only one position variable, &. If we 
know the strain at any one point in the deformed zone, 
then we can evaluate the constants A and B and draw the 
pole curve. Equation (22) is the equation of a parabola, 
so we expect the pole curve for any equal area ductile 
deformation zone to be parabolic in form. 

The parabola always closes to the left and its vertex is 
on the horizontal axis, having coordinates (a[2 = 0, 
A~2 = A/B). If the strain in the deformed zone reaches 
the vertex of the pole curve, then at this point our 
Cartesian coordinate frame coincides with the principal 
coordinate frame. Thus, at the vertex of a parabolic pole 
curve we have the degenerate case of pure flattening, or 
a ductile deformation zone with no shear. 

Now look at the case of a ductile deformation zone 
which is only undergoing simple shear, so that there is 
neither area strain nor longitudinal strain parallel to the 
zone boundaries. In other words, A = 1 and B = a{l = 1, 
and equation (22) can be re-written as: 

(a'12) 2 = a ;2  --  1, (23) 

and the pole curve is a parabola whose vertex is at 
a~2 = 1. Thus, the vertex represents a point in the 
deformed zone at which there is no strain at all; a 
situation often assumed to exist at the margin of ductile 
deformation zones (Ramsay & Graham 1970, p. 799). 

We have seen that for the special case of the ductile 
deformation zone and refracted cleavage, all possible 
strain states in the deformed rock plot onto a parabolic 
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Fig. 8. The pole curve for a deformat ion having constant  strain in one 
direction is a parabola.  For any point  on the pole curve,  a Mohr  circle 
can be drawn which represents  the state of strain at one point  on a given 
principal trajectory in the physical plane. Because the strain is constant  
parallel to x~, this Mohr  circle actually represents  the state of strain 
everywhere on a line which is parallel to x~ and goes through the point 

for which 0' is measured .  

pole curve in the strain plane. Now, every point on the 
pole curve represents one Mohr  circle and this Mohr 
circle represents the state of strain everywhere on a 
particular material line which is parallel to xl, since we 
have required the strain to be constant in that direction. 
If we know the principal directions for a point on the 
pole curve, then we can draw its Mohr  circle and find the 
material line which this Mohr  circle represents. To find 
the principal directions associated with any point on the 
pole curve, we use the Mohr circle identity: 

-- 2A12 , or 0' 1 { 2 A { 2 ) ,  
tan (20') a~2 - a~ = 2 tan-1 ka;2 - B 

/ 

(24) 

where 0' is the angle that the principal direction will 
make with the xl axis in the physical plane. As long as 
there is a single valued relationship between 0' and the 
orientation of the principal strain trajectory, every 0' 
will define a unique point on any given strain trajectory 
in the physical plane (Fig. 8). It does not matter  which 
strain trajectory we use, since all of the strain trajectories 
are assumed to be parallel along the ductile deformation 
zone. Thus, equation (22) permits us to take any point 
on the pole curve, draw its Mohr circle, and find its 
corresponding point in the physical plane. Once a pole 
curve is established, it is a good practice to mark values 
of 0' at regular intervals along the curve. 

Since neglecting any component  of the deformation 
can lead to large errors, we are generally wary of the 
simple shear assumption. We therefore prefer the less 
euphemistic term 'ductile deformation zone'  to the term 
'shear zone' .  When constructing the pole curve for a 
ductile deformation zone, it may nonetheless be instruc- 
tive to plot the simple shear parabola for comparison 
purposes. 

Initial thickness of a deformed stratigraphic unit 

In order  to understand the internal parts of thrust 
belts, where large penetrative deformations are the rule, 

it is essential to develop methods by which we can 
restore deformed stratigraphic units to their original 
thickness. Cloos (1947, pp. 906-912) was the first to 
attempt to restore a stratigraphic section using strain 
measurements.  Employing a single strain measurement,  
Cloos suggested that the current stratigraphic section in 
the hinge of the South Mountain fold, Maryland, is now 
about twice its original thickness. Cloos performed 
this calculation for only one point in the fold, however, 
neglecting possible inhomogeneities in the strain. 

The numerical integration of strains was introduced 
by Ramsay (1969, pp. 58-62) as a way of restoring 
inhomogeneously strained stratigraphic sections. Ram- 
say's concept of strain integration is fundamental to the 
study of any inhomogeneous deformation, but his 
method for unstraining stratigraphic sections ignores the 
rotational component  of the strain. 

Hossack (1978) applied a modified form of the strain 
integration technique to the Bygdin conglomerate,  Nor- 
way, using deformed pebbles as strain markers. To 
calculate the original thickness of a deformed section 
using Hossack's method,  however, we must assume that 
the strain trajectories have not been rotated and that 
there is no area strain. While these assumptions are 
shown to be reasonable for the Bygdin conglomerate,  
they are too restrictive to have wide application. 

We propose that many deformed stratigraphic sec- 
tions have parallel boundaries and fit the criteria for 
constant strain in one direction, thus having a strain 
geometry similar to the ductile deformation zone. Fur- 
thermore,  if the fabric suggests that the area strain is 
uniform (see our discussion of three-dimensional strain 
distributions), and if we know the state of strain at one 
point then we can immediately construct the pole curve 
for this deformation. 

Consider a small, homogeneously deformed material 
element in a stratigraphic section. The material line 
which was originally perpendicular to bedding has now 
been sheared through an angle qJ, where: 

tan O = Al~2 2 A i l ' ° r 0 = t a n  -1 - -  • (25) 

This material line (Fig. 9a) will have a deformed length 
of :  

l 0 - -  122 , ( 2 6 )  
cos (0 )  

where 122 is the deformed thickness of the material 
element measured perpendicular to the bedding (Fig. 
9a). From the definition of the reciprocal quadratic 
elongation we can write: 

lo : ' = lovA0, (27) 

where l0 is the original thickness of our small element.  
Now substituting (26) into (27) gives: 

l 0 = ~ 122. ( 2 8 )  
cos (¢,) 

Equation (28) is for one small material element in our 
deformed section. To find the total original thickness of 
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Fig. 9. Restoring a deformed stratigraphic section using the pole curve. 
(a) Cleavage or strain markers suggest that the strain is constant in one 
direction. Simple trigonometric relationships are established for a 
small material element in the deformed section. (b) If the strain is 
known at any one point in the section, the pole curve is easily 
constructed and A~ can be evaluated at different points in the section. 
(c) To numerically integrate equation (29), find the area under the 

X/XV2/COS I//VS L22 curve. 

Generalizing the pole  curve 

We have shown that for some special cases, a single 
pole curve can represent the state of strain everywhere 
in a deformed cross-section. In these cases, one point on 
the pole curve represents the state of strain on an entire 
material line in the physical plane. This simplification 
results from our requirement that the strain is a function 
of xl only, and is constant in the x2 direction. 

In the general case, however, the strain will vary with 
both x I and x2. Thus the pole curve will only represent 
the state of strain along one material line, with each 
point on the pole curve referring to the state of strain at 
one material point on this line. 

If we knew the general equation of the pole curve, it 
would be useful to plot the pole curves for all of the 
principal trajectories on the same strain plane. The 
equation for the pole curve would then be acting as a 
transformation law; converting the physical geometry of 
the strain into its corresponding strain field in the strain 
plane. We propose that this transformation law may be 
represented by the compatibility equations. 
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our deformed section, we write equation (28) in terms of 
the infinitesimal lengths and then integrate. The result is: 

Lo = cos (~t) d122' (29) 

where L 0 is the total original thickness of the unit. 
Equation (29) is conceptually similar to the relationships 
suggested by Hossack (1978, equation 5) and Ramsay 
(1969, p. 62). 

In order to numerically integrate equation (29) we 
must know the value of Tv- VAJcos q~ at a number of discrete 
points in the deformed section, a task which is easily 
accomplished using the pole curve. Take a point in the 
deformed section and, using the orientation of the princi- 
pal direction at that point, locate its corresponding point 
on the pole curve. The coordinates of this point in Mohr 
space allow us to calculate ~0 from equation (25). We can 
then use either the pole or conventional Mohr circle 
methods to find the reciprocal quadratic elongation, A~ 
(Fig. 9b). We can now plot VX2£/cos 0 vs L22, and the 
area under this curve will be the original thickness of our 
deformed section (Fig. 9c). Thus, if a parallel-sided 
stratigraphic section has uniform area strain and con- 
stant strain in one direction, we can use the pole curve 
and numerical integration to determine its original thick- 
ness. To do this we only need to know the state of strain 
at one point and the shape of the principal strain trajec- 
tories in the deformed rock. 

APPENDIX 1: DERIVATION OF THE FINITE 
STRAIN COMPATIBILITY EQUATIONS 

This derivation is essentially Cobbold's (1977), though we present it 
in a somewhat expanded form. We use matrix algebra and the matrix 
representation of tensors wherever possible. 

In geology, we always observe and measure rocks in the deformed 
state, and we are therefore interested in the transformation which 
carries the deformed rock to its undeformed state. We will call this 
transformation a reciprocal deformation, and express it algebraically 
a s :  

X, = f(x~, x2) 
(AI) 

= g (xl, x2), 

where the small letters represent the deformed state and the capital 
letters the undeformed state. Rewriting equations (A1) in differential 
form: 

of of 
d X  1 = ~-XI d x  I -l- - -  d x ,  

0x2 - 
(A2) 

d X  2 = O g dx  I + Og Oxl ~ dx2, 

or in matrix form: 

af of 1 0x-, 
d = " (A3) 

L 
Og og " 
g,g~ 

where d is the reciprocal deformation matrix, which transforms the 
strain ellipse back into a circle. 

The reciprocal deformation matrix contains both rotational and 
pure strain information mixed together in a complex way, all described 
with respect to a coordinate system drawn on the deformed rock. We 
want to express all of the solid body rotation with one matrix, r, and all 
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of the changes in size and shape with another matrix t. This decom- 
position is based on Cauchy's fundamental theorem, which states that 
any deformation at a point can be decomposed into a translation, a 
rigid rotation, and a pure strain (Ericksen 1960, pp. 840-842, Truesdell 
& Toupin 1960, p. 274). 

Because our strains are to be measured in a coordinate system drawn 
on the deformed rock, we must remove the shape change before 
applying the reciprocal rotation. In matrix algebra, successive defor- 
mation events accumulate as matrices toward the left (Elliott 1972, pp. 
2622-2623, Truesdell & Toupin 1960, p. 246), so we have: 

[ c o s w  - s i n 0 9 ]  Its, t l , ]  
d = rt  = • - (A4) 

sin 09 cos 093 Lfi2 t2~-J 

The symmetric matrix t is called the reciprocal left stretch matrix. 
This nomenclature refers to the forward deformation which is the 
inverse of equation (A4): 

D = T R. (A5)  

Since we have used left polar decomposition for the forward defor- 
mation (Elliott 1970, pp. 2234-2235), T is called the left stretch matrix. 
Thus, we call the inverse of T the reciprocal left stretch matrix and 
represent it as t. Carrying out the multiplication indicated in equation 
(A4): 

0 x l  
d =  

0g __ 
0x~  

-X2 _ III COS 09 - -  t12 sin 09 /12 c o s  09 - t22 sin 

Og - 
/ t  us in09 + q2cos°J t12sinto + tz2cos 

(A6) 

Due to the utility of the Cauchy strain matrix in structural geology, 
we note the relationship between the Cauchy matrix A' and the 
reciprocal left stretch matrix t: 

AI2 A'eJ k tl2(tll + t22) t~2 + t~2 ] (A7) 

And in the principal coordinate frame: 

A{ = ~ A~ = f12- (A8) 

If the material remains continuous, then the deformation must vary 
in a smooth manner,  which means t h a t f  andg '  must be continuous and 
differentiable functions. From calculus we know that the second order,  
mixed partial derivatives of a continuous function are equal, regardless 
of the order in which the derivatives are taken (see Thomas & Finney 
1979, pp. 629~532 for a proof). Therefore 

0 ( 0 ~ )  0 (0-~2), 0 (d~xg) d (0~xg2). (A9) 

Substituting the elements of the reciprocal deformation matrix, from 
equation (A6) into equation (A9) we find: 

0 I t ,  cos 09 - t12 sin 09] = 0 [tie cos ~0 - t22 sin 09] 
Ox 2 Ox i 

(A10) 
O [tl, sin w + t,2 cos 09] = 0 [t12 sin 09 + t22 cos 09], 
Ox2 Oxl 

which is the compatibility requirement for finite deformation• After  
expanding the derivates in equation (A10) and undertaking a consider- 
able amount of algebra, we find that the trigonometric terms cancel 
and we are left with the compatibility equations in standard form: 

- A  309 _ 1 &Aft 0tl2 3t22 
aXl 20x2 t,~ ox--i - t,20x--~ 

( A l l )  
A 009_ 10A;2 0tl2 _ OtH, 

Ox2 20x  I t22 ~x 2 q20x--2 

where "A" is the reciprocal quadratic area strain, A = (tutz2 - t22) 2, 
and Ah and A ~z have been substituted according to the relationships in 
equation (A7). 

Equation ( A l l )  differs from Cobbold (1977, equation 7) in two 
small ways. First, we have explicitly used the fact that t is symmetric, 
so that q2 = t2~- Second, our equations differ by a factor of - 1 ,  
because in a right-handed coordinate frame, a counter-clockwise 
reciprocal rotation is positive• This sense of rotation is opposite to that 
implied by Cobbold (1977, equation 3), but in agreement with his later 
work (1980, equation 3). 

APPENDIX 2: TRANSFORMATION OF THE 
COMPATIBILITY EQUATIONS 

Define R i to be a general, three-dimensional curvilinear coordinate 
system. Now define a new coordinate system, S i, such that every point 
in the R i system has a new and unique set of coordinates in the Si 
system. The equations of the axial surfaces of the new coordinate 
system can be written in terms of the old coordinates as follows: 

SI(RI,Rz,R3) = bt S2(R~,R2,R3) = b2 S3(RI,R2,R3) = b3, (A12) 

and since the transformation is unique, we can also write: 

RI(SI,S2,S3) = b I R2(S1,$2,53) = b~ R3(SI,$2,$3 ) = b ~ ,  (A13) 

where the b, ' s  are constants representing displacement of the origin of 
the Si system relative to the origin of the R i system. The uniqueness 
requirement is equivalent to saying that the coordinate axes of both 
coordinate systems intersect in only one point (for good discussions of 
coordinate systems see McConnell 1957, pp. 130-132, Gol 'denblat  
1962, pp. 25-27, and Morse & Feshbach 1953, pp. 21-25). 

Now consider a general function F, where: F = f(R1,R2,R3). The 
physical meaning of OF/OR I is the amount that the value of F changes 
due to the R 1 component  of any three-dimensional position change. In 
the R~ frame, we find the R1 component  of the position change by 
projecting the general position change onto the RI axis. We then 
evaluate how much the value of F changed for this projected displace- 
ment  along R l. 

The physical meaning of this OF/OR~ should not change just because 
we move into the S~ coordinate frame. By equation (A13) we can see 
that R1 = f(S1,S:,S3), so that a simple change along R~ in the old 
coordinate system translates to a general three dimensional position 
change in our new coordinate system. The physical meaning of OF/OR t 
is still the projection of a position change onto R t and its associated 
change in F, but now we must treat Rl as a general space curve in the S i 
system. The partial derivative OF/OR~ transforms into the S i system 
according to the following rule: 

OF _ OF OSt + O F  OS,_ + OF OS 3 (AI4) 
OR1 8Si 0R1 OS2 ORI OS3 0RI 

Every point in the old system maps onto a unique point in the new 
system, so we might expect that the new coordinate system must 
always have the same number of independent  variables as the old one. 
By carefully defining the new coordinate system, however,  we may be 
able to reduce the number of independent  variables without loss of 
generality. For example, if we know that all position changes in the R~ 
coordinate frame will be restricted to a certain plane, then we could 
apply the special transformation by which all changes in the Ri system 
become changes in a two-dimensional Si system which has its coordi- 
nate axes in this particular plane. This transformation will greatly 
simplify any function originally defined in the R i system. Similarly, if Ri 
is a two-dimensional system, but we know that all position changes will 
be along a certain line, we can define this line as the only axis in our new 
coordinate system. By this transformation we will have reduced any 
function in the old system to a function with only one independent 
variable in the new system. 
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Note added in proof 
Work in progress by P. Cobbold and J. Cutler suggests that the reduced form of the compatability equations (4) may be restricted in their 

application. This does not apply to the standard form of the equations. 


